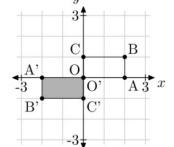
Specialist Mathematics Unit2: Chapter 11

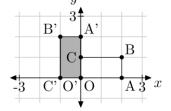
Ex 11A

1.
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -2 & -2 & 0 \\ 0 & 0 & -1 & -1 \end{bmatrix}$$



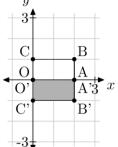
This represents a 180° rotation.

$$2. \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & -1 \\ 0 & 2 & 2 & 0 \end{bmatrix}$$



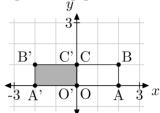
This represents a 90° anticlockwise rotation.

3.
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & -1 & -1 \end{bmatrix}$$



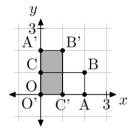
This represents a reflection in the x-axis.

$$4. \quad \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -2 & -2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$



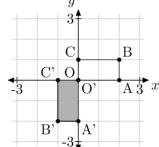
This represents a reflection in the y-axis.

5.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 2 & 2 & 0 \end{bmatrix}$$



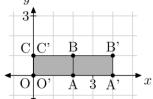
This represents a reflection in the line y = x.

6.
$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & -1 \\ 0 & -2 & -2 & 0 \end{bmatrix}$$



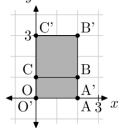
This represents a reflection in the line y = -x.

7.
$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 4 & 4 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

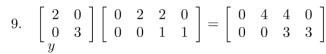


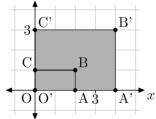
This represents a horizontal dilation of factor 2.

$$8. \quad \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 3 & 3 \end{bmatrix}$$



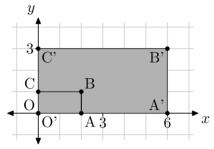
This represents a vertical dilation of factor 3.





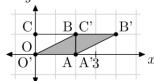
This represents a dilation with a horizontal scale factor of 2 and vertical scale factor of 3.

10.
$$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 6 & 6 & 0 \\ 0 & 0 & 3 & 3 \end{bmatrix}$$



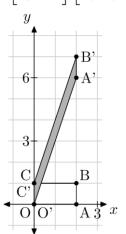
This represents a dilation with uniform scale factor of 3.

11.
$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 4 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$



This represents a shear parallel to the x-axis with scale factor of 2.

12.
$$\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 & 0 \\ 0 & 6 & 7 & 1 \end{bmatrix}$$



This represents a shear parallel to the y-axis with scale factor of 3.

13. The working needed here is quite straightforward. I present a worked solution for the first matrix only.

(a)
$$\det \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -1 \times -1 + 0 \times 0 = 1$$

(b) Area OABC =
$$2 \times 1 = 2$$

Area O'A'B'C' = $2 \times 1 = 2$
$$\frac{\text{Area O'A'B'C'}}{\text{Area OABC}} = \frac{2}{2} = 1$$

Ex 11B

1. (a) For matrix A, (1,0) maps to (0,-1) and (0,1) maps to (1,0); the required matrix is

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]$$

For matrix B, (1,0) maps to (-1,0) and (0,1) maps to (0,-1); the required matrix is

$$B = \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right]$$

For matrix C, (1,0) maps to (0,1) and (0,1) maps to (-1,0); the required matrix is

$$C = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

(b)
$$A^2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}^2$$

$$= \begin{bmatrix} 0^2 + 1 \times -1 & 0 \times 1 + 1 \times 0 \\ -1 \times 0 + 0 \times -1 & -1 \times 1 + 0^2 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= B$$

(c)
$$C^2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^2$$

$$= \begin{bmatrix} 0^2 - 1 \times 1 & 0 \times -1 - 1 \times 0 \\ 1 \times 0 + 0 \times 1 & 1 \times -1 + 0^2 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= B$$

(d)
$$A^3 = A^2 A$$

 $= BA$
 $= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
 $= \begin{bmatrix} -1 \times 0 + 0 \times -1 & -1 \times 1 + 0^2 \\ 0^2 + (-1)^2 & 0 \times 1 - 1 \times 0 \end{bmatrix}$
 $= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

(e)
$$B^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}^2$$

$$= \begin{bmatrix} (-1)^2 + 0^2 & -1 \times 0 + 0 \times -1 \\ 0 \times -1 - 1 \times 0 & 0^2 + (-1)^2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= I$$

(f)
$$A^{-1} = \frac{1}{0^2 - (-1 \times 1)} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

= $\frac{1}{1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
= $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
= C

(Alternatively, show that AC = I)

(g)
$$B^{-1} = \frac{1}{(-1)^2 - 0^2} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

= $\frac{1}{1} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
= $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

= B

Alternatively, since we have already shown that $B^2 = I$,

$$B^{2} = I$$

$$B^{-1}B^{2} = B^{-1}I$$

$$(B^{-1}B)B = B^{-1}$$

$$IB = B^{-1}$$

$$B = B^{-1}$$

2. (a) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ maps to $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ maps to $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$

The transformation matrix is $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

(b)
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 maps to $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ maps to $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The transformation matrix is $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

(c)
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 maps to $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ maps to $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$

The transformation matrix is $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

(d) A reflection in the x-axis followed by a reflection in the y-axis is represented by premultiplying the matrix for the first reflection by the matrix for the second, i.e.

$$\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right] = \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right]$$

A reflection in the y-axis followed by a reflection in the x-axis is represented by

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right] \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right]$$

(e) Compare the results from (d) and (e).

3.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ maps to } \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ maps to } \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

The transformation matrix is $P = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

If P is its own inverse, then $P^2 = I$

$$P^{2} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= I$$

4.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 maps to $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ maps to $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The transformation matrix is $\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$

The determinant of this matrix is $3 \times 1 - 0 \times 0 = 3$ as expected.

- 5. (a) No working needed.
 - (b) No working needed. (A, B, C and D are the columns of the second matrix and A', B', C' and D' are the columns of the product.)

6.
$$TA = A'$$

$$T^{-1}TA = T^{-1}A'$$

$$A = T^{-1}A'$$

$$T^{-1} = \frac{1}{1 \times 1 - 2 \times 0} \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

A, B and C have coordinates (1,3), (1,1) and (4,-3) respectively.

7.
$$T^{-1} = \frac{1}{2 \times 1 - 0 \times -3} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$$
$$A = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$
$$B = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 5 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$
$$C = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

A, B and C have coordinates (1,3), (-1,2) and (0,2) respectively.

8.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} P = P'$$

$$\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} P' = P''$$

$$\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} P = P''$$

$$\begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix} P = P''$$
Matrix
$$\begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix}$$
 will transform PQR directly to
$$P''Q''R''.$$

9.
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}^{-1} = \frac{1}{-1 - 0} \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$$

Matrix $\begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$ will transform PQR directly to P"Q"R".

Matrix $\begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$ will transform P"Q"R" directly to PQR. (The matrix is its own inverse.)

10. A shear parallel to the y-axis, scale factor 3, transforms $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and so is represented by $\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$.

A clockwise rotation of 90° about the origin transforms $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and so is represented by $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

The single matrix to perform both these transformations in sequence is

$$\left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 3 & 1 \end{array}\right] = \left[\begin{array}{cc} 3 & 1 \\ -1 & 0 \end{array}\right]$$

12. Post-multiply both sides of the equation with the inverse of $\begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix}$ to eliminate it from the LHS:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 12 & -1 \\ 7 & 0 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 12 & -1 \\ 7 & 0 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix}^{-1}$$

$$\begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{1+6} \begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$$

$$= \frac{1}{7} \begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 12 & -1 \\ 7 & 0 \end{bmatrix} \frac{1}{7} \begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$$

$$= \frac{1}{7} \begin{bmatrix} 14 & 35 \\ 7 & 21 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
so $a = 2, b = 5, c = 1$ and $d = 3$.

13. (a)
$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix} = \begin{bmatrix} 2 & 9 \\ -1 & -4 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{1-0} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

 $\begin{array}{cccc} (d) \ First, & to & transform & A_3B_3C_3D_3 & to \\ & A_2B_2C_2D_2 & & \end{array}$

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}^{-1} = \frac{1}{0+1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

then to further transform the result to $A_1B_1C_1D_1$ we use the matrix we obtained in (c), so the single matrix that combines both is

$$\left[\begin{array}{cc} 1 & 0 \\ -2 & 1 \end{array}\right] \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] = \left[\begin{array}{cc} 0 & -1 \\ 1 & 2 \end{array}\right]$$

14. A reflection in the x-axis transforms $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$ and so is represented by $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

A reflection in the line y = x transforms $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and so is represented by $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

A 90° clockwise rotation is represented by $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ (see question 10).

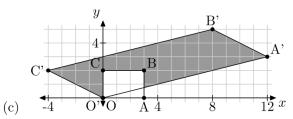
The matrix that represents these three transformations in sequence is

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

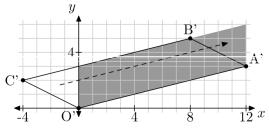
which is the identity matrix, resulting in the original shape in the original position.

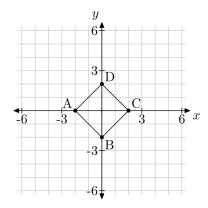
- 15. (a) $\det T = 4 \times 1 (-2) \times 1 = 6$. Given that the area of OABC is 6 units², the area of O'A'B'C' is $6 \times 6 = 36$ units².
 - (b) $\begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 3 & 3 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 12 & 8 & -4 \\ 0 & 3 & 5 & 2 \end{bmatrix}$

The coordinates of O', A', B' and C' are (0,0), (12,3), (8,5) and (-4,2) respectively.



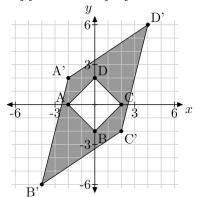
(d) There are number of straightforward ways of determining the area of the parallelogram. For example if we slice off the part of the parallelogram that is left of the y-axis and slide it to the other end (as shown below), we get a parallelogram with a (vertical) base of 3 and (horizontal) perpendicular height of 12, yielding an area of 36.





16. (a)

- (b) Area = 8 units^2 (area of any square, rhombus or kite is half the product of its diagonals).
- (c) det M = $1 \times 3 2 \times -1 = 5$. The area of A'B'C'D' is $5 \times 8 = 40$ units².
- $(d) \quad \left[\begin{array}{ccc} 1 & 2 \\ -1 & 3 \end{array} \right] \left[\begin{array}{cccc} -2 & 0 & 2 & 0 \\ 0 & -2 & 0 & 2 \end{array} \right] = \left[\begin{array}{cccc} -2 & -4 & 2 & 4 \\ 2 & -6 & -2 & 6 \end{array} \right]$



 $Area = 40 \text{ units}^2.$

17. Every point on the line y = 2x + 3 can be represented by $\begin{bmatrix} x \\ 2x + 3 \end{bmatrix}$.

To prove:

$$\left[\begin{array}{cc} 2 & -1 \\ -2 & 1 \end{array}\right] \left[\begin{array}{c} x \\ 2x+3 \end{array}\right] = \left[\begin{array}{c} -3 \\ 3 \end{array}\right]$$

for all x.

Proof:

LHS =
$$\begin{bmatrix} 2 & -1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ 2x+3 \end{bmatrix}$$
$$= \begin{bmatrix} 2(x) - (2x+3) \\ -2(x) + (2x+3) \end{bmatrix}$$
$$= \begin{bmatrix} -3 \\ 3 \end{bmatrix}$$
$$= BHS$$

Notice that the matrix $\begin{bmatrix} 2 & -1 \\ -2 & 1 \end{bmatrix}$ is singular (i.e. it has a determinant of zero) and therefore is not invertable. This is a requirement of any matrix that transforms two or more distinct points to the same position in the image.

18. Every point on the line y = x - 1 can be represented by $\begin{bmatrix} x \\ x - 1 \end{bmatrix}$.

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ x-1 \end{bmatrix} = \begin{bmatrix} x \\ 2(x) + (x-1) \end{bmatrix}$$
$$= \begin{bmatrix} x \\ 3x-1 \end{bmatrix}$$

The equation of the image line is y = 3x - 1.

19. To prove:

$$\left[\begin{array}{cc} 1 & 3 \\ 3 & 9 \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} x \\ 3x \end{array}\right]$$

for all a, b and for some relationship between x and a and b.

Proof:

$$LHS = \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

$$= \begin{bmatrix} a+3b \\ 3a+9b \end{bmatrix}$$

$$= \begin{bmatrix} a+3b \\ 3(a+3b) \end{bmatrix}$$

$$Let \ x = a+3b$$

$$then \ LHS = \begin{bmatrix} x \\ 3x \end{bmatrix}$$

20. (a)
$$\begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ 5 - 3x \end{bmatrix} = \begin{bmatrix} 6(x) + 2(5 - 3x) \\ 3(x) + (5 - 3x) \end{bmatrix}$$
$$= \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$

The line y = 5 - 3x is transformed to the point (10, 5).

(b)
$$\begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 6a + 2b \\ 3a + b \end{bmatrix}$$
Let $x = 6a + 2b$

$$\begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x \\ \frac{x}{2} \end{bmatrix}$$

Points on the x-y plane are transformed to the line $y = \frac{x}{2}$ or 2y = x.

21. Let (a,b) be an arbitrary point before transformation and (a',b') the corresponding point after transformation.

$$\begin{bmatrix} a' \\ b' \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
$$= \begin{bmatrix} 3a \\ 2a + b \end{bmatrix}$$

If the point before transformation lies on the line $y = m_1x + p$ then $b = m_1a + p$ and the transformed point is

$$\begin{bmatrix} a' \\ b' \end{bmatrix} = \begin{bmatrix} 3a \\ 2a + (m_1 a + p) \end{bmatrix}$$
$$= \begin{bmatrix} 3a \\ (m_1 + 2)a + p \end{bmatrix}$$

We can turn this into a pair of parametric equations then convert that to a Cartesian equation of a line:

$$x = 3a$$

$$y = (m_1 + 2)a + p$$

$$= \frac{(m_1 + 2)(3a)}{3} + p$$

$$= \frac{m_1 + 2}{3}x + p$$

which is in the form $y = m_2 x + p$ where $m_2 = \frac{m_1 + 2}{3}$, as required.

Now consider two lines perpendicular to each other both before and after transformation.

Let q be the gradient of the first line before transformation.

Since the lines are perpendicular, the gradient of the second line is $-\frac{1}{a}$.

Transforming the first line results in a gradient of $\frac{q+2}{3}$.

Transforming the second line results in a gradient of $\frac{-\frac{1}{q}+2}{3}=\frac{-1+2q}{3q}$.

Since the lines a perpendicular after transformation,

$$\frac{q+2}{3} = -\frac{3q}{-1+2q}$$

$$= \frac{3q}{1-2q}$$

$$(q+2)(1-2q) = 9q$$

$$q-2q^2+2-4q = 9q$$

$$-2q^2+2-12q = 0$$

$$q^2-1+6q = 0$$

$$q^2+6q-1 = 0$$

$$(q+3)^2-9-1 = 0$$

$$(q+3)^2 = 10$$

$$q+3 = \pm\sqrt{10}$$

$$q = -3 \pm\sqrt{10}$$

Hence the gradients of the two lines before transformation are $-3 + \sqrt{10}$ and $-3 - \sqrt{10}$.

Ex 11C

1. (a)
$$\begin{bmatrix} \cos 30^{\circ} & -\sin 30^{\circ} \\ \sin 30^{\circ} & \cos 30^{\circ} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$$

(b)
$$\begin{bmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$
$$= \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} \\ \sin 60^{\circ} & \cos 60^{\circ} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}$$

$$(d) \begin{bmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

(e) Two consecutive 30° anticlockwise rotations about the origin are represented by

$$\begin{aligned} &\frac{1}{2} \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \frac{1}{2} \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \\ &= \frac{1}{4} \begin{bmatrix} 3-1 & -2\sqrt{3} \\ 2\sqrt{3} & -1+3 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} \end{aligned}$$

which is a 60° anticlockwise rotation about the origin.

(f) A 30° anticlockwise rotation about the origin followed by a 60° anticlockwise rotation about the origin is represented by

$$\frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} \sqrt{3} - \sqrt{3} & -1 - 3 \\ 3 + 1 & -\sqrt{3} + \sqrt{3} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

which is a 90° anticlockwise rotation about the origin.

(g) Two consecutive 45° anticlockwise rotations about the origin are represented by

$$\frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$= \frac{2}{4} \begin{bmatrix} 1 - 1 & -1 - 1 \\ 1 + 1 & -1 + 1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

which is a 90° anticlockwise rotation about the origin.

2. (a)
$$\begin{bmatrix} \cos(2 \times 30) & \sin(2 \times 30) \\ \sin(2 \times 30) & -\cos(2 \times 30) \end{bmatrix}$$
$$= \begin{bmatrix} \cos 60 & \sin 60 \\ \sin 60 & -\cos 60 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} \cos(2 \times 60) & \sin(2 \times 60) \\ \sin(2 \times 60) & -\cos(2 \times 60) \end{bmatrix}$$
$$= \begin{bmatrix} \cos 120 & \sin 120 \\ \sin 120 & -\cos 120 \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}$$

For (a),

$$\begin{pmatrix} \frac{1}{2} \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix} \end{pmatrix}^2 = \frac{1}{4} \begin{bmatrix} 1+3 & \sqrt{3}-\sqrt{3} \\ \sqrt{3}-\sqrt{3} & 3+1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Similarly for (b),

$$\begin{pmatrix} \frac{1}{2} \begin{bmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} \end{pmatrix}^2 = \frac{1}{4} \begin{bmatrix} 1+3 & -\sqrt{3}+\sqrt{3} \\ -\sqrt{3}+\sqrt{3} & 3+1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Any reflection must be its own inverse since reflecting a reflection restores the original. Consider the general form for a reflection:

$$\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}^{2}$$

$$= \begin{bmatrix} \cos^{2} 2\theta + \sin^{2} 2\theta & \cos 2\theta \sin 2\theta - \cos 2\theta \sin 2\theta \\ \cos 2\theta \sin 2\theta - \cos 2\theta \sin 2\theta & \sin^{2} 2\theta + \cos^{2} 2\theta \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

3.
$$\begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

5. A rotation of angle A followed by a rotation of angle B is equivalent to a rotation of angle A+B.

A rotation of angle A followed by a rotation of angle B is represented by $\begin{bmatrix} \cos A & -\sin A \\ \sin A & \cos A \end{bmatrix} \begin{bmatrix} \cos B & -\sin B \\ \sin B & \cos B \end{bmatrix}$

$$= \begin{bmatrix} \cos A \cos B - \sin A \sin B & -\cos A \sin B - \sin A \cos B \\ \sin A \cos B + \cos A \sin B & -\sin A \sin B + \cos A \cos B \end{bmatrix}$$
$$= \begin{bmatrix} \cos A \cos B - \sin A \sin B & -(\sin A \cos B + \cos A \sin B) \\ \sin A \cos B + \cos A \sin B & \cos A \cos B - \sin A \sin B \end{bmatrix}$$

A single rotation of angle A+B is represented by $\begin{bmatrix} \cos(A+B) & -\sin(A+B) \\ \sin(A+B) & \cos(A+B) \end{bmatrix}$

Equating these gives

$$\begin{bmatrix} \cos(A+B) & -\sin(A+B) \\ \sin(A+B) & \cos(A+B) \end{bmatrix}$$

$$= \begin{bmatrix} \cos A \cos B - \sin A \sin B & -(\sin A \cos B + \cos A \sin B) \\ \sin A \cos B + \cos A \sin B & \cos A \cos B - \sin A \sin B \end{bmatrix}$$

Equating corresponding matrix elements from any column or row gives:

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

and
$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

as required.

7. (a) The 180° rotation is represented by

$$\begin{bmatrix} \cos 180^{\circ} & -\sin 180^{\circ} \\ \sin 180^{\circ} & \cos 180^{\circ} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

This transformation leaves point O unchanged at the origin. We need to transform this point to (6,4) so the total transformation is represented by

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

(b) Let θ be the angle that the line OO' makes with the x-axis. This is the angle that O'A'B'C' must be rotated clockwise in order to transform O' onto the x-axis. Since O' has coordinates (6, 4),

$$\tan \theta = \frac{4}{6} = \frac{2}{3}$$

$$\sin \theta = \frac{4}{\sqrt{4^2 + 6^2}} = \frac{4}{\sqrt{52}} = \frac{4}{2\sqrt{13}} = \frac{2}{\sqrt{13}}$$

$$\cos \theta = \frac{6}{2\sqrt{13}} = \frac{3}{\sqrt{13}}$$

The matrix to achieve this clockwise rotation (see question 3) is

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \\ -\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \end{bmatrix}$$
$$= \frac{1}{\sqrt{13}} \begin{bmatrix} 3 & 2 \\ -2 & 3 \end{bmatrix}$$

- - $O''(\frac{26}{\sqrt{13}}, 0) = (2\sqrt{13}, 0),$
 - $A''(\frac{23}{\sqrt{13}}, \frac{2}{\sqrt{13}}),$
 - $B''(\frac{21}{\sqrt{13}}, -\frac{1}{\sqrt{13}}),$
 - $C''(\frac{24}{\sqrt{13}}, -\frac{3}{\sqrt{13}}).$

(You could, if preferred, give these with rational denominators and arrive at the same answers Sadler gives.)